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Abstract- We propose building a Studio 
enabling the use of diverse existing mission 
activity and scenario patterns, the creation of 
new ones, and the modeling of their effects 
using existing modeling tools. The core of the 
Studio is a component-based Type Library, 
which captures years of mission adaptation 
patterns in various forms. 

The Studio works as a content server to capture 
the developed adaptation knowledge for reuse 
and provides bridging into different mission 
uplink implementations, including the Mission 
Data System [l] (MDS) statelgoal machinery. 
Various activities can be coordinated, controlled, 
and reused through the Studio's component 
interface to establish and model a mission 
scenario. A special component Factory 
mechanism will be in place to facilitate the 
adaptation of projects into the Studio. 

The architecture of the Studio reflects and 
enforces a division of knowledge and actions 
into three parts: Model, Controller, Viewer. The 
Model contains information about (a proposed 
version of) the spacecraft and mission. The 
Controller contains logic for constructing 
scenarios of mission activities. The information 
in the Model and Controller is principally in the 
form of reusable patterns. A Viewer can be a 
simple or complex software system. For 
example, Apgen [2,3] is one possible viewer, 
MDS is another. 

A 3-tiered infrastructure is used for the Studio, 
reflecting the Model, Controller, Viewer 
arch i tecture[4,5]. 

The Studio is useful in pre-phase A of a project 
by enabling spacecraft design options to be 
played against desired mission scenarios. In 
later design phases of a project, the construction 
and modeling of more detailed scenarios is 
supported by the Studio. 
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1. INTRODUCTION 

In the early life of a project, before the 
spacecraft or mission has been designed, 
design options are studied. Variations of 
spacecraft design are considered, as are 
variations in the overall mission. Models at 
various levels of fidelity are used to derive 
implications on cost, science return, and other 
key features from each variation. Some aspects 
of intended operation after launch are relevant. 
For example, a spacecraft design implies how 
much power is available to the spacecraft, which 
can constrain the way the spacecraft is 
operated. Conversely, operational 
requirements, such as the number of images to 
be taken, yield constraints on spacecraft design. 
Hence it is useful to model aspects of intended 
operation. 

Prototypical “days in the life” of the mission can 
be developed to draw implications from and on 
spacecraft and mission design. Each scenario 
consists of activities that are modeled as to their 
effects on key resources, often power, energy, 
telecommunication data rates from the 
spacecraft to earth, and data volume of onboard 
storage and downlink. Frequently a scenario 
consists of a handful of basic activities each 
repeated many times, perhaps with variations. 

As mission and spacecraft variations are 
considered, scenarios are added and changed, 
and facets of resources are changed. For 
example, changing from a solar-powered 
spacecraft to a nuclear-powered one changes 
the amount of power available, and the timing of 
availability. So the models of resources change, 
as do pertinent scenarios. 

Executing a scenario against the models of 
resources can confirm or deny the viability of the 
scenario. Unviable ones can be changed to 
become viable, yielding limits on durations or 
other aspects of activities. Mission performance 
can be estimated by incorporating into the 
models parameters considered indicative, 
including even some rough estimates of 
“science value”. Such parameters can be useful 
in comparing one mission variation to another 
even if the absolute value of the parameter has 
no intrinsic meaning. 

As the mission progresses from studying grossly 
different options to questions of finer scale, the 

scenarios and resource models can fruitfully be 
made more detailed. There is a natural 
progression, aligned with the Mission Data 
System (MDS) state analysis process, of 
identifying and codifying lower level resources 
(MDS state variables). The further development 
of scenarios is aligned with the MDS process of 
identifying goal types. (Note: MDS, under 
development at JPL, is a software framework for 
future space missions.) 

The MISS facilitates the construction of 
activities, scenarios, and models of resources. 
One key ingredient is the use of “patterns” for 
specifying these individually and in related 
groups. The use of patterns eases the 
construction of variations. Another key 
ingredient is software “components”. 
Components can represent different versions of 
a resource model, for example, that can be 
swapped one for another. This enables the user 
of MISS to piece together a tailored modeling 
system. Sometimes it is even useful for 
components to be swapped during the course of 
a modeling execution. 

This paper describes the vision for the MISS, 
and relates a case study that is using the 
concepts, though often in a manual mode. The 
case study is the Mars Science Laboratory 
(MSL) project, which is a spacecraft that is to be 
launched in 2009. The mission includes an 
analytical laboratory on the surface of Mars. 

2. MISS SYSTEM ARCHITECTURE 

The architecture has three parts: Model, 
Controller, and Viewer. 

2.1 Model 

The Model specifies information about the 
spacecraft and mission that has existence 
independent of scenario construction. In 
particular, the Model specifies the design of the 
spacecraft, including, for example, the devices 
that comprise the spacecraft, the possible states 
of each device, the spacecraft resources, and 
the relation of resources to states (e.g., how 
much power a hazard avoidance camera uses 
when in the “sampling” state). The Model also 
contains mission activities or goals that will form 
the building blocks of scenarios. 
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The Model need specify only those aspects that 
will affect the construction or analysis of 
scenarios, and only to the detail required for 
such. In pre-phase A of a mission, where trade 
studies are comparing different possible designs 
of the spacecraft, each candidate design has a 
different version of the Model. 

actually cause more than one pattern to be 
exercised, since the definition of a pattern can 
refer to other patterns. In the first version of the 
Studio, patterns are created manually. In future 
versions, the Controller will create not only 
scenarios, but also models, built from existing 
models and stored back into the Model. 

Much of this kind of data is available elsewhere 
during the design of a mission, so the Studio 
imports it from those sources. 

The Model portion of the Studio is patternized; 
the Model’s information is structured into 
reusable patterns. For example, there is a 
device pattern, which abstracts the notion that a 
device has several possible states. Examples of 
patterns are given later in this paper. 

The Controller is the heart of the Scenario 
Studio. Whereas the Model contains mostly 
information that is more general than needed for 
scenarios, the business of the Controller is 
specific to scenarios. The Controller contains 
the “business logic”, i.e., the logic specific to the 
construction of scenarios. 

2.3 Viewer 

A Viewer is a software system that ingests the 
scenario constructed by the Controller. The 
Studio will use existing software systems as 
Viewers, such as tools that display timelines with 
values computed by modeling the effects implied 
by a scenario. 

2.4 Relation of Viewer and Controller 

2.2 Controller 

The Controller has information needed for 
constructing a mission scenario from the Model. 
A mission scenario is a collection of activities to 
be accomplished during a given span of time 
during the mission. The activities include timing 
information and their effect on states of devices 
in the 
spacecraft. The Controller is 

The Controller 
portion of the 
Studio is also Production. The 
patternized. Producer contains 
Each pattern the logic that is 
specifies an independent of the 
aspect of Viewer; this is the 
constructing a central core of the 
scenario. For Controller. The 
example, there Production 
would be a contains 
pattern information needed 
(several to format the 
actually) for output scenario 
merging two suitable for 
timelines. The Figure 1 : Studio Architecture ingestion by the 
Controller desired Viewer. 
patterns refer to Model patterns. 

divided into two 
parts: the Producer 
and the 

To construct a scenario involves instantiating 
many Model patterns (for example, constructing 
(models of) several devices on the spacecraft 
that will be used in the scenario), and 
instantiating a Controller pattern that refers to 
those models. Instantiating a pattern can 
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3. SYSTEM 
ARCHITECTURE 

3.1 Patterns 

A pattern is a group of 
reusable assets that can help 
to speed up the process to 
create and deploy a new 
Ground Data System (GDS) 
for Missions. 

The patterns leverage on the 
experience of JPL Mission 
System Engineers / Architects 
to create new GDSs in a more 
effective and efficient way. 
There are static and dynamic 
patterns. These patterns are 
based on Mission 

1 I I 

L L 

requirements, then quickly translated through 
the different levels of pattern assets to identify a 
final solution design and product mapping 
appropriate for the application being developed. 

3.2 Static Patterns 

The Static Pattern (see figure 2) consists of the 
following levels [6]: 

1 .Mission Project Patterns: They come from 
Mission requirements (a.k.a. Customer 
requirements), and represent different Mission 
types (e.g., Orbital, In-Situ, Flyby, etc.). 

2. Business Patterns: The next level of Mission 
requirements provides us with a set of Mission 
and Spacecraft specifications, which usually 
describe what are the components I subsystems 
of the spacecraft, the behavior of the 
subsystems, the control flow and the data flow of 
each subsystem. The Mission Operational 
concept provides us the requirements on users’ 
interactions with the mission operations’ and the 
ground data system’s applications and their data 
products. The knowledge of the business 
patterns usually are captured into software 
models (e.g, Data Storage model, Power 
subsystem model, Attitude Control subsystem 
model, and Telecom model). 

3. Mission Scenario Patterns: This level of 
patterns is based on the Mission Plan. 
Depending on the mission type, the scenarios 
from the mission plan will be patternized. 
Examples are Data Downlink communication 
scenario, Rover Drive over a Sol scenario, Pan 
Cam Imaging scenario, and S/C occultation 
scenario. The pattern definitions of these 
scenarios are captured into the Mission 
Scenario and Timeline models. 

4. Application Patterns: They represent the 
partitioning of the application logic and data 
together with the styles of interaction between 
the logic tiers. We are proposing to use an ”N 
tiers” Architecture [5] with Web Server, 
Application Server, and Database Server (see 
figure 3) for the MISS system architecture. The 
Model layer usually is an essential part of the 
system. It contains the definitions of the mission 
scenarios and models. Some of the models are 
created as a component object or a dynamic 
library. The model layer is also called “data 
layer”. It uses a LDAP server for managing the 
name space and for faster access. Mission 
scenario and model patterns are stored in this 
layer. The patterns are created from the results 
of system engineering of the mission design, 
subsystem behaviors, and also the mission 
operations concept. The Controller layer, also 
called “applications layer“, has the logic of the 
scenarios and models production. It uses XML, 
XSTL for managing the input, webmacro 
templates or Java Beans to handle specific 
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Model 

Figure 3: N-Tler Architecture: Web. Amlicdion. and Databats 

functionalities (e.g., pattern request handler, I/O 
interfaces, database access, and presentation 
output for viewer). A search engine is also 
included in the controller layer, in order to 
optimize the query of the database server. The 
view layer is where the scenarios and models 
are in a particular format able to be viewed. The 
controller has the knowledge to publish the 
appropriated content which depends on the 
specific viewer (e.g., Apgen, MDS, or web 
browser). 

5. Product 
mappings: 
The product 
mappings will 
use the “push 
or “publish” 
method to 
populate the 
solution into 
the different 
viewers (see 
figure. 3). 

3.3 Dynamic 
Patterns 

The Dynamic 
Pattern [SI 
(see figure 4) 

composite patterns. The 
Integration Patterns connect 
other Business patterns together 
to create applications with 
advanced functionality. While the 
models from the Business Patterns 
represent the S/C behavior model 
and the Mission Scenario Patterns 
represent the Mission Scenario 
definitions, the integration patterns 
will have the Mission and Flight 
rules, preference selections, 
exclusiveness, persistence, and 
invalidation checks that govern the 
composition of different mission 
scenarios or mission timelines. 
The Controller translates 
interactions with the view into 
actions to be performed by the 
definitions of the Integration 
Pattems and the models from the 
Business Patterns. Based on the 

user interactions and the outcome of the model 
actions, the controller responds by selecting an 
appropriate view. The Composite Patterns 
combine Business patterns and Integration 
patterns to create complex, advanced GDS. (We 
are not addressing the composite patterns any 
further in this paper.) 

3.4 Pattern Instantiation 

Patterns in general are processes that can be 
abstracted. 

*Pmlsmnce 
*Invaild.tion 
*Exclusivenets 

Flaure 4: I%” IC Pattems 

introduces two 
more pattern concepts: integration patterns and 

This 
abstraction can 
occur 
at different 
phases of a 
mission 
design. When 
a pattern is 
applied, 
normally an 
instantiation 
step(s) is taken 
to turn this 
abstraction into 
a concrete 
entity that can 
be visualized. 
In fact, the 
MCV model 
itself is a 
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pattern adapted for mission planning as will be 
presented in the following sections. 

Patterns can be archived and searched and 
composed to form new patterns. The searching 
and composing are not discussed in this paper, 

A pattern should have the following minimum 
elements: 

0 Description 
0 Keyword(s) 
0 Instantiation parameters 
0 Presentation(s) per controller 

0 Producer per controller 
per viewer 

As we will see in the following section, pattern 
instantiation is the code of the Controller 
function. The system model request is sent to 
the Controller. The Controller locates a Producer 
that can handle this request. The Producer 
selects the right Presentation(s) and passes the 
request in the format that fits the Presentation. 
The Presentation then produces the outputs for 
the Viewer. 

3.5 Case Study: Timeline Scenario 

A Timeline is a time based sequence of events. 
Other than some system administration events, 
most events are records of changing of certain 
system state(s), for example, set the Heater 
state to “On” at 20 seconds from the start of the 
Timeline. Another example is: trigger an 
onboard procedure such as “Starting the 
Traversing at 30 seconds from the start of the 
Timeline”. The mission adaptor can use Timeline 
to capture most operational sequences into a 
collection of Timelines. Multiple Timelines can 
be composed into a single Timeline. In this 
Timeline scenario, two patterns were defined: 

State transition - Spacecraft consists of devices. 
Each device has states. An operational 
sequence can be thought as a sequence of 
device change states. 

Timeline composing - When composing multiple 
timelines into a single Timeline, the following 
rules shall be carried: 

0 Redundant state 
If the new state of a device is a 
redundant state to the current state, the 
new state change is ignored. For 

example, the Heater state “Standby” is a 
redundant state of the state “On”. 
Preferred state 
If two state changes occur at the same 
time, the less preferred state is ignored. 
For example, if the Heater is requested 
to be “On” and “Off” at the same time, 
“Off” is ignored. 
Invalid state 
If an invalid state is requested, an error 
message is generated and the new 
state is ignored. For example, an “On” 
state is requested without a “Standby” 
state occurring first. 
Persistent state 
Persistent state is easier to explain with 
an example. First state change: at time 
of 2 seconds, set the Heater to “On” and 
at time of 7 seconds, set the heater to 
“Off”. Second state change: at time of 
2.5 seconds, set the Heater to “On”, at 
time of 6 seconds, set the Heater to 
“Standby”. The end result is: at time of 
2 seconds, set the Heater to “On”, at 
time of 7 seconds, set the Heater to 
“Standby”. This example implies a 
preference that “On” > “Standby” > “Off”. 

Of course, this Timeline composing pattern is 
missing a few important behaviors. One of the 
missing behaviors is Exclusiveness. For 
example, two requests to set Heater “On” is not 
a problem. But setting a Camera to “Sampling” 
in the same interval of time is a problem. 

3.6 Static pattern, Dynamic pattern 

One way to differentiate a Static pattern and a 
Dynamic pattern is the type of implementation of 
the pattern. Normally, the Static pattern consists 
of a set of data items. State transition is a Static 
pattern. A dynamic pattern normally consists of 
procedures. Timeline composing is a Dynamic 
pattern. As we will demonstrate in MISS’S 3- 
tiers infrastructure, the Static pattern is 
implemented as Oracle data tables, while the 
Dynamic pattern is implemented as a Java bean 
component which can be loaded and executed 
on demand. 

3.7 Implementation 

In this case study, MISS is producing a Timeline 
for the DSMS Apgen tool. The MISS/Apgen 
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ControVProduction is implemented as a template 
in Webmacro format. 
(http://w.webmacro.orq). The Model and 
Control/Producer are implemented in the 
Timeline Java bean ( see Figure 5). In the 
future, these two shall be separated, as we will 
discuss later. 

P APPlrmphblf 
(Javalntwhw) 

Fiaure 5: Model Weline Production 

3.8 Model 

Model is where the mission data is kept. 

Sample Timeline Model entry 1 : 

{~~PSE","-1","00:00:00","24 :36:00", 
new Integer (StateChange.FIXED). 
tostring ( )  , rrOnrrI 
"GG - SOL", " O " }  

1 , 0 5 1 ,  llNul~ll, ll3ll, 

Device type: PSE 
Which device: -1 means the first 

PSE of all the PSE's. 
Start time: 0O:OO:OO 
Duration: 24:36:00. Duration is 

meaningless unless the next 
field is DERIVED. 

Stop state significance: FIXED. 

Start state: "Onrr 
Last Parameter: 0 (future use) 
End State: Null 
Repeating count: 3 
Repeating interval: 1 SOL 
Repeating starting index: 0 

Insignificant 

This Model info is saying: Set the first PSE 
device to "On" at 0O:OO:OO of a SOL. Repeat the 
setting for 3 SOLs, starts from SOL 0. 

Sample Timeline Model entry 2: 

{ "PSE", "-1", "OO:OO:OO", "00: 36:00", 
new Integer (Statechange. DERIVED) . 
tostring ( ) , "Standby", " O " ,  "Onrrl "3", 
"GG - SOL", " O " }  , 

The difference between Sample 2 and Sample 1 
is the significance of the End state. In Sample 2, 
the End state is significant. The Model info is 
saying: Set the first PSE device to "Standby" at 
0O:OO:OO of a SOL. After 00:36:00, set it to "On". 
Repeat the setting for 3 SOLs, starts from SOL 
0. 

The reason the Model info is implemented as 
Java data is only for quick prototyping. In our 
next paper, we will talk about the using of 
Aspect-Oriented Programming(A0P) and 
Object-Oriented Data Base (OODB) as the true 
implementation. 

3.9 Control 

Control is where the business processing of the 
Model take place. The result of the processing is 
presented through a use of Production based on 
the Viewer. 

3.10 Production 

The viewer in this case study is Apgen. The 
following is a Webmacro template of the Apgen 
AAF and APF. 
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#foreach $(Statechange) in $(DB.Devices) 
{ 

#foreach $(StateRepeat) in $(StateChange.StateRepeats) 
{ 

activity instance $(StateChange.Name) of type 
$(StateChange.TypeName) id 

$ (Statechange. Name) 
begin 

attributes 
"Start" = GG SEQ START TIME + - 

$ (Statechange. Elapsed-Time) T 
$ (StateRepeat.Elapsed-Time); 

##"Duration" = $ (Statechange. Duration) ; 
"Duration" = GG SET ACT DUR; 

( #foreach $ (Parameter) in 

- - - 
parameters 

$(StateChange.Parameters) 

{$(Parameter.Value),}$(StateChange.LastParameterValue)); 

#if ($StateChange.HandleOffState) 
{ 
activity instance $(StateChange.Name) of type 
$ (Statechange. TypeName) id 

end activity instance $(StateChange.Name) 

$ (Statechange. Name) 
begin 

attributes 

$ (Statechange. Elapsed-Time) 

j(StateRepeat.Elapsed_Time); 

"Start" = GG SEQ START TIME + - 

$ (Statechange. Duration) + 

##"Duration" = $ (Statechange. Duration) ; 
"Duration" = GG SET ACT DUR; 

( #foreach $ (Parameter) in 

- - - 
parameters 

;(StateChange.Parameters) 

($(Parameter.Value),}$(StateChange.TerminateParameterValue)); 

1 ##End of if ($StateChange.HandleOffState) 
t ##End of foreach $(StateRepeat) in 
(StateChange.StateRepeats) 
.##End of foreach $(Statechange) in $(DB.Devices) 

end activity instance $(StateChange.Name) 
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For the readers who do not know about Apgen, 
it is not required to know Apgen before we can 
show you what is in this Production. Production 
is a material that can guide the Producer to 
produce a run stream for a particular Viewer. In 
this Production, $([id].[id]) is an indication of 
parameter(s) required to materialize this 
Production. Let us use the Sample Timeline 
Model Entry 2 as example: 

{ "PSE" "-1" I "00 : 00 : 00"  I "00  : 3 6  : 00" I 
new Integer (StateChange.DER1VED). 
tostring ( ) I NStandby"l "OnrrI "3" I 

"GG - SOL", "o"}  , 
StateChange.Name->"PSE, 
StateChange.Elapsed-Time->OO:OO:OO 
StateRepeat.Elapsed-Time->GG-SOL 
StateChange.LastParameterValue 

->"St andby" 
StateChange.TerminateParameterVa1ue 

->"On" 
StateChange.StateRepeats 

->StateRepeat [ 31 

The last one is of the most interesting. It 
basically saying, StateRepeats is an array of 3 
of StateRepeat. The StateRepeat object, then 
carries the Statechange repeating info as 
shown above. 

The Webmacro provides us with a way of 
separating the processing data from the viewing 
of the data. Imaging if the template is an HTML 
based, than it simply created an web HTML for 
the same data. In our next paper, we will use 
this approach to create C++ code that can be 
compiled by a C++ complier and executed. 

3.1 1 Producer 

The Producer is the process that implements the 
"business logics". Section 2.3, we have defined 
the "Business Logics" for Timeline composing. 
The Producer of Timeline is a Java bean. 
Segments of the code are listed and discussed. 

~ ~ 

int nbrdevices = 0; 
int currentdeviceindex = 0; 

for (int totalst = 0; totalst < 
TimelineStateChange.length;totalst++) { 

Integer.parseInt(TimelineStateChange[totalst][l]); 
int currentcount = 

if (currentcount < 0) currentcount = (-currentcount); 
Integer.parseInt(TimelineStateChange[totalst][l]); 
nbrdevices = nbrdevices + currentcount; 

I 

stchg = new StateChange[nbrdevices]; 

The above code is to set up all the State changes in a Timeline. See the line 
"stchg = new Sta teChange[nbrdevices] " creates an array of Statechange beans. 
Each instance of bean represents an state change event in the Timeline. 
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boolean moredeploy = true; 
while (moredeploy) { 

Current-State= ( (StateDeploy) Timeline.getLast ( )  ) .getstate ( 1  ; 
Current_State-Holder=(State)States.get(Current-State); 
getNextSelectedDeploy(); 
if (Current-State. compareTo (NextSche. getstate ( ) ) ! = 0 )  { 

//Check if the next state is a valid state 
Cur ren t_S ta t e_Holde r . s e tNex t_S ta t e (Nex tSche .ge tS ta t e ( ) ) ;  
if (Current-State-Holder.isNext-State-Valid()) { 

//Check if the next state is redundant 
i f ( !Curren t_Sta te_Holder . i sNext_Sta te_Redundant ( ) )  { 

//Now check for Preference persistance 
if (!isLowerPreference((StateDeploy) 

Timeline.getLast(),NextSche)) 
//Put this into Timeline, else drop it 
Timeline.addLast(NextSche); 

CombineRedundantDeploy ((StateDeploy) 
else 

Timeline.getLast(),NextSche); 
1 
else 

combineRedundantDeploy((StateDep1oy) Timeline.getLast(), 
NextSche); 

1 
else 

//Logging invalid state error 
1 
else { 

//Same state, but check the duration and determine if it is needed 
//to extend the original request 
combineRedundantDeploy( (StateDeploy)Timeline.getLast(),NextSche); 

1 
//continue as long as the finalDeploy is still on the Workline 
if ( ! Workline. contains (finalDeploy) ) 

moredeploy = false; 
else 

//Pick the first one on the Workline 
NextSche=(StateDeploy)Workline.removeFirst(); 

1 

This code segment show the Time composing algorithm. It first check for the redundancy. If the new state 
is a redundant state, it calls CombineRedundantDeploy 0 to do the persistency check. 

3.12 Studio 
To people who know about template 
programming, this may appear to be a template 
instantiation process using Webmacro java 
classes. (For another java template, see 
httD://iakarta.aDache.oralvelocity.) But template 
instantiation only represents one controller 
implementation, that used for MSL trade study. 
The number of possible implementations is 
unlimited. 
Another popular implementation involves using 
XMLIXSLT. In this approach, the Webmacro 

template is replaced by an XSLT translator, 
which “translates” the incoming message into an 
Apgen control stream. The selection of the 
controller implementation depends on the ease 
and performance. 
The question comes to mind, how are all these 
Producers, Productions saved? Producers in 
MISS are Java beans. Productions are basically 
text files. In the case study, the Model is 
implemented as a data member. But it really 
should be a procedure (Java bean) to access a 
backend data base. It takes all these pieces to 
make one service. All these strongly suggest a 
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web services infrastructure is the best 
implementation of MISS. 

In our next paper, we will discuss how to deploy 
MISS as web services. 

4. CONCLUSION AND FUTURE WORK 
Mission planning is a very complex and time 
consuming process. Because of its complexity, 
we believe this expert system approach with 
reusable patterns is a viable solution. 
The future work involves the following: 

0 Pattern saving and searching. 
Currently all the Productions are 
Webmacro text files. There is no 
indexing among them, and no content 
keywords are exposed. This makes 
keyword searching difficult. A solution 
under consideration is to incorporate a 
content data base for easy saving and 
searching. 

Need to develop a formal specification 
describing a pattern. A pattern in a way 
resembles a component such as a Java 
Bean or Window COM object, in which 
patterns have properties that describe 
how they can be composed. This is one 
of the main topics of our next paper. 
MISS as a web service. 
A web service provides easy access for 
the users. A web service also provides a 
good infrastructure that combines 
different programming tools into a 
cohesive application. With the 
advancement of the web application 
server, quite a lot of needed utilities are 
ready to use. Most importantly, a 
commercial search engine can be 
applied to facilitate the pattern searching 

0 Pattern composing. 

0 

[71 
0 Studio. 

MISS is designed to be a multi-mission 
tool, in that project structure is required. 
Each project can have its own “my 
place”. Each project can create its own 
patterns and share with others. Version 
control of patterns becomes important. 
Currently the MISS team is reviewing 
JMX (Java Management Extension) with 
JBOSS [8] and Sniff+ from WindRiver. 
(httD://www. windriver.com/Droducts/sniff 
plus). 
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